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Received: 12 September 2000
Communicated by P. Schuck

Abstract. A local, state-independent nuclear single-particle potential for 208Pb was developed by suitably
shaping the nuclear central term and the related spin-orbit term of Thomas type. The aim was to reproduce
accurately the excitation energies of the known single-particle states in 207Tl, 207Pb, 209Bi and 209Pb as
well as the recently observed dependence of the spin-orbit splittings on angular momentum � and principal
quantum number n. As result, a set of orthogonal proton and neutron wave functions was obtained which
were used for a consistent reanalysis of proton and neutron single-particle transfer reactions on 208Pb. The
quality of the description of measured angular distributions is comparable with that obtained originally
with individual “best fit” potentials. The resulting single-particle spectroscopic factors amount on the
average to S ≈ 0.7. Single-particle densities derived from these wave functions are in qualitative agreement
with measured charge and mass densities for 208Pb.

PACS. 21.60.Cs Shell model – 21.10.Jx Spectroscopic factors – 27.80.+w mass range 190-219 – 25.45.Hi
Transfer reactions, 2H induced

1 Introduction

On the occasion of the 50th anniversary of the nuclear
shell model many publications and conference contribu-
tions have appreciated its success and have discussed its
limitations [1,2]. Investigations of single-particle aspects
of the double magic nucleus 208Pb were the subject of nu-
merous experiments in the last 40 years. Therefore this
nucleus is one of the best studied cases with respect to
the independent particle model. To date the experimen-
tal data base on the states of 208Pb and the surrounding
nuclei has reached a stable state. In general the analysis
of the experimental data was performed within the single-
particle shell model, however, based on different methods,
inconsistent parameter sets and sometimes unnecessary
simplifying assumptions. So far a consistent analysis con-
sidering all data simultaneously is still missing. On the
other hand, principally the proper theoretical description
of the atomic nucleus must be in the framework of a rela-
tivistic many-body theory —a task, which can be realized
at present only for very light nuclei. The rigorous treat-
ment must be relaxed for the heavier mass systems. For
practical applications, however, such calculations of, e.g.,
angular distributions, exceed present capabilities in com-
puting or loose the desired precision due to the assump-
tions made. Limitations have to be applied to configura-
tion space and shape of potentials or interactions.
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It is the aim of the present investigation to derive a
purely phenomenological mean-field potential for 208Pb
which is based on experimentally determined input only.
With the smallest number of assumptions and constraints
in construction it will secure a consistent description of
all available data on single-particle properties of 207Pb,
207Tl, 209Pb and 209Bi.

In general, such single-particle states are described
with phenomenological models. According to the ideas of
the shell model, the Schrödinger equation must be solved
with an appropriate central and with a suitable spin-orbit
potential. For protons a Coulomb potential is added. In
practice, calculations of reaction cross-sections or polar-
ization variables, based on standard routines of DWBA
codes usually rely on Woods-Saxon potentials of fixed ge-
ometry for the central part, a spin-orbit potential with
an arbitrary coupling constant and a Coulomb potential
of a uniformly charged sphere. The result is an individ-
ual, state-dependent central potential, because the depth
must be adjusted separately for each level to reproduce
the measured separation energy of a nucleon with quan-
tum numbers n, � and .

For the present analysis an eminent role is given to
the spin-orbit partners, i.e. single-particle levels with fixed
principal quantum number n and angular momentum �,
but opposite coupling of spin s = 1/2 to yield a total
angular momentum  = � ± 1/2. These eigenstates have
characteristic energies E(n�). The energy difference of
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this pair of levels, the spin-orbit splitting

εso = E(n� = �− 1/2) − E(n� = �+ 1/2) (1)

clearly originates through details in shape and strength
of the respective spin-orbit potential. In contrast, the cen-
tral potential determines the single-particle energies E(n�)
which are not affected by the spin-orbit interaction.

In some models the strength of the spin-orbit poten-
tial must be adjusted to describe the individual observed
spin-orbit splittings. One cannot expect [3,4] that the
fine structure of the single-particle spectra with energies
E(n�) and the deduced dependence of εso on quantum
numbers n and � [5,6] can be described exactly by a
central potential with simple parametrisation of Woods-
Saxon type, which in addition must absorb the deficiencies
of the Coulomb and spin-orbit potentials. A more rigorous
method to search for state-independent shell model poten-
tials for 208Pb of Woods-Saxon plus spin-orbit potential of
Thomas type has been applied among others by Bohr and
Mottelson [3], Mahaux and Sartor [4], Rost [7], Blomquist
and Wahlborn [8], and Bhattacharya [9]. Due to the sim-
plicity of the models, the results are, of course, unsatisfac-
tory as far as the agreement with measured single-particle
energies, details of the spin-orbit splittings and the de-
duced shape of the spin-orbit potential is concerned.

Apart from these attempts of a phenomenological de-
scription on the basis of roughly parametrized single-
particle central and spin-orbit potentials, numberless pub-
lications report on the derivation of shell model potentials
from the nucleon-nucleon interaction and show the con-
nections with nuclear densities [10,11]; others treat finite
nuclei in relativistic mean-field models [12–17]. Particu-
larly the spin-orbit potential and its relation to the two-
body spin-orbit and tensor interaction has been the sub-
ject of many investigations [10,11,18–20]. In general these
analyses aim at a principal understanding of the exper-
imentally observed phenomena. They have the virtue of
relying on basic ideas, but the comparison of the results
with measured data has only qualitative character.

A typical result of those models is the fact that the re-
lation between the mean-field central potential VN(r) and
the spin-orbit potential Vso(r, �s) is given by the Thomas
form:

Vso(r, �s) = −1
2

(
h̄

mπc

)2

λ
1
r

dVN(r)
dr

(� · s) (2)

which is well known from atomic physics.
It is the aim of the present investigation to present a

purely phenomenological model, which describes as accu-
rately as possible the single-particle energies in 208Pb and
the systematic fine structure of the spin-orbit splittings.
We try to use only measured results and avoid unnecessary
model assumptions.

Many established spin-orbit doublets exist for the shell
closure at 208Pb. They are observed in the particle and
the hole spectra of neutrons and protons with respect to
208Pb, i.e. in the low-lying single-particle states of 207Pb,
209Pb, 207Tl and 209Bi.

The starting point of the present analysis is the sys-
tematic behaviour of the fine structure observed for nu-
clear spin-orbit splittings εso of nuclei in the vicinity
of closed shells [5,6]. Besides the well-known (2� + 1)-
proportionality of εso, a (1/n)-dependence on the prin-
cipal quantum number n has been found [5] at least for
all observed states near the Fermi level, and a monotonous
decrease with increasing mass number A.

The shapes of the potentials are described by a sum
of cubic splines. This parametrization permits easy mod-
ifications of shapes and strengths of the central poten-
tial to reproduce the single-particle energies E(n�) and of
the spin-orbit potential to describe the spin-orbit split-
ting εso. The only constraint in this procedure is eq. (2),
the Thomas prescription, which connects the central and
spin-orbit potential. This search was performed separately
for protons and neutrons in 208Pb.

The solution of the Schrödinger equation with these
potentials for protons and neutrons with quantum num-
bers n, � and  yields the desired single-particle energies
and a set of orthogonal wave functions. Their validity
can be tested by i) comparison of calculated spectroscopic
quantities like spectroscopic factors with results of single-
particle transfer reactions, and ii) comparison of single-
particle densities with measured charge and mass densi-
ties.

In section 2 we recollect empirical data on single-
particle energies and spin-orbit splittings, we describe the
numerical procedure to shape the single-particle central
and spin-orbit potentials in section 3, and we discuss the
resulting effective potentials in section 4. Section 5 deals
with a comparison of calculated and measured single-
particle properties: single-particle spectra of 207Pb, 207Tl,
209Pb and 209Bi, spin-orbit splittings, spectroscopy of neu-
tron and proton pick-up and stripping reactions on 208Pb
and single-particle densities. In section 6 we discuss the
deduced spin-orbit potential in context with theoretical
results derived form different model assumptions and give
a conclusion in section 7.

2 Experimental data

Single-particle energies E(n�) and spin-orbit splittings
εso(n�) of protons and neutrons in 208Pb were calculated
from ground-state separation energies and excitation ener-
gies in 207Tl, 207Pb, 209Bi and 209Pb. The data were taken
from the latest compilations of Nuclear Data Sheets [21,
22] which are based on results from single-particle trans-
fer reactions on 208Pb. These data are widely accepted
in the literature and represent the basis of several theo-
retical investigations [4,7,9–13,20,23,24]. The proton and
neutron energies E(n�) and deduced spin-orbit splittings
εso(n�) are listed in tables 1 and 2. The energies for pro-
tons in the 2f5/2, 3p1/2 and 3p3/2 shells are regarded to
have in part considerable experimental errors; the same
is true for neutrons in the 1h9/2, 1h11/2, 1i13/2, 2f5/2

and 2f7/2 shells. They were used with smaller weights in
the fit procedures (see section 3). We note, that all ener-
gies are close to the Fermi energy and remember the fact
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Table 1. Proton states in 207Tl and 209Bi (energies in MeV).

n� E(n�) E(n�) εso(n�) ε̃so(n�)
Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc.

1h9/2 −3.799 −3.903
1h11/2 −9.361 −9.407 −6.833 −6.705 5.562 5.504 1.011 1.001

2d3/2 −8.364 −8.319
2d5/2 −9.696 −9.684 −9.163 −9.150 1.332 1.365 0.533 0.546

2f5/2 −0.973 −0.730
2f7/2 −2.902 −3.012 −2.075 −2.145 1.929 2.057 0.551 0.588

3p1/2 0.156 0.262
3p3/2 −0.681 −0.730 −0.402 −0.399 0.837 0.992 0.558 0.662

3s1/2 −8.013 −8.017 −8.013 −8.017

Table 2. Neutron states in 207Pb and 209Pb (energies in MeV).

n� E(n�) E(n�) εso(n�) ε̃so(n�)
Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc.

1h9/2 −11.4 −11.698
1h11/2 −16.5 −16.229 −14.1 −14.170 5.1 4.530 0.9 0.824

1i11/2 −3.158 −3.341
1i13/2 −9.624 −9.620 −6.640 −6.722 6.466 6.279 0.995 0.966

2f5/2 −8.081 −8.101
2f7/2 −10.118 −10.113 −9.245 −9.251 2.037 2.013 0.582 0.575

2g7/2 −1.445 −1.371
2g9/2 −3.956 −3.937 −2.840 −2.796 2.511 2.566 0.558 0.570

3p1/2 −7.368 −7.352
3p3/2 −8.266 −8.266 −7.967 −7.961 0.898 0.914 0.599 0.610

3d3/2 −1.399 −1.259
3d5/2 −2.370 −2.384 −1.982 −1.934 0.971 1.124 0.389 0.450

4s1/2 −1.905 −1.951 −1.905 −1.951

that the single-particle energies of 208Pb refer to different
cores, when considering the (A+ 1)- and (A− 1)-systems.
For neutrons the core changes only by one mass unit out
of A = 208. Therefore the solutions of the Schrödinger
equation lead to negligible energy differences. However,
for protons in addition the charge of the core changes by
one charge unit out of only Z = 82 which yields energy
shifts of ∆E = 240 keV. This is important for the spin-
orbit splitting of protons in the 1h-shell (11/2-hole state
in 207Tl, 9/2-particle state in 209Bi), where the difference
of single-particle energies according to eq. (1) must be
corrected by ∆E to obtain the net value of εso.

The single-particle energies from tables 1 and 2 repre-
sent a considerable fraction of data on nuclear levels ob-
served near the Fermi energy of closed shell nuclei. They
were used for the investigation of nuclear spin-orbit split-
tings [5]. The graphical representation (fig. 1, top) pre-
sents the reduced spin-orbit splittings ε̃so=εso/((2�+1)/2)
plotted versus mass number A. These quantities exhibit a

pronounced dependence on the principal quantum number
n and a monotonous decrease with mass number A. There
are no evident differences for protons and neutrons and for
particle-particle, particle-hole and hole-hole doublets. The
spin-orbit splittings can be parametrized in terms of angu-
lar momentum �, principal quantum number n and mass
number A:

εso(n�,A) =
2�+ 1

2
1
n
kA−c (3)

with parameters k = 23.3 MeV and c = 0.58.
The extracted A-dependence (fig. 1, bottom) as rep-

resented by the parameter c reflects a difference of the
actual spin-orbit potential to that one which would be de-
rived by the Thomas-prescription from a harmonic oscil-
lator nuclear potential (c = 2/3). The (1/n)-dependence
can be shown to result from a spin-orbit potential of
unusual shape [6]. These relations are incorporated as
starting point in the present investigation.
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Fig. 1. Top: Measured spin-orbit splittings for protons (open
circles) and neutrons (full circles) in the mass region between
12C and 208Pb after normalisation by (2�+1)/2. The data from
tables 1 and 2 show a monotonous decrease with mass num-
ber A, which can be described by f(A)=kA−c (eq. (3)) and a
characteristic relation to the inverse of the principal quantum
number n (full lines) Bottom: The further normalisation by
f(A) demonstrates the (1/n)-dependence more clearly.

3 The numerical procedure

The present investigation searches for unique state-inde-
pendent local potentials for protons and neutrons. When
inserted in the appropriate Schrödinger equation they
must reproduce the single-particle energies of tables 1
and 2. This requirement includes the inherent fine struc-
ture of the single-particle spectra expressed by the spin-
orbit splittings. The interaction of a nucleon with the
residual nucleus shall be given in a purely phenomeno-
logical description by

V = VC(r) + VN(r) + Vso(r, �s). (4)

Without essential model assumptions we use

a) a Coulomb-potential VC(r) derived from the measured
charge density of 208Pb [25],

b) a nuclear potential VN(r), the radial extent of which is
estimated by the measured mass density [26],

c) a spin-orbit potential Vso(r, �s) of Thomas type
(eq. (2)).

Separately for protons and neutrons, we shaped the
potential wells VN(r) and Vso(r) with the aim to minimize
the differences between measured and calculated single-
particle energies. Individual shaping of both potentials
was achieved by a representation based on 20 natural (cu-
bic) spline functions.

According to the potential decomposition of eq. (4)
we calculated at first single-particle energies E(n�) undis-
turbed by the spin-orbit interaction:

E(n�) = E(n� = �+ 1/2) + εso(n�)
�

(2�+ 1)
,

= E(n� = �− 1/2) − εso(n�)
(�+ 1)
(2�+ 1)

. (5)

Equation (5) indicates the decoupled search procedure:
VN(r) must be optimized to reproduce the energies E(n�)
and Vso(r) must be optimized to reproduce the spin-orbit
splittings εso(n�). However, both potentials cannot be var-
ied independently, because Vso(r) is related to VN(r) via
the condition eq. (2).

The numerical procedure can be characterized as an it-
erated first-order perturbation calculation. We start with
a suitable Woods-Saxon–type potential V 0

N(r), solve the
Schrödinger equation for particles with quantum num-
bers (n�) and obtain a set of wave functions Ψ0(n�) with
radial part R(n�) and energy eigenvalues E0(n�). Then we
calculate the spin-orbit splittings in first-order perturba-
tion theory:

εso =
(2�+ 1)

2

(
h̄

mπc

)2

λ

∫ ∞

0

1
r

dVN

dr
R2(n�) r2dr (6)

and modify the shape of Vso(r) until best agreement with
measured values of εso(n�) was achieved. After that, the
nuclear potential VN(r) is reconstructed from Vso(r) by
integration:

VN(r) =
∫

r Vso(r) dr. (7)

Application of first-order perturbation theory to the
difference

(
V 0

N(r)−VN(r)
)

yielded the corrections ∆E(n�),
which were minimized by suitable shaping of VN(r). In
turn, Vso(r) was generated according to eq. (2) and the
shape improved to describe εso(n�). This procedure was
continued until the potentials V 1

N(r) and V 1
so(r) repro-

duced all single-particle energies E(n�) and spin-orbit
splittings εso(n�), respectively. Solving the Schrödinger
equation with these improved potentials provided a new
set of wave functions Ψ1(n�), which enable the next step of
perturbation calculations. This procedure was iterated un-
til the deviations between calculated and measured values
of E(n�) and εso(n�) were of the order of the experimen-
tal errors. Final solution of the Schrödinger equation with
the iterated potentials V i

N(r) and V i
so(r) yielded the eigen-

values E(n�) which differed only insignificantly from the
measured single-particle energies.

The compilations in tables 1 and 2 enable a quanti-
tative comparison of calculated and measured values of
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E(n�), E(n�) and εso(n�). The r.m.s. deviations for both
E(n�) and E(n�) amount to ∆ = 16 keV for protons and
to ∆ = 25 keV for neutrons. The differences can be further
reduced in principle, but this seems to be not reasonable
in view of the experimental errors.

4 The phenomenological potentials

4.1 The Coulomb potential

Following the concept to use measured input data in
our analysis whenever possible and to avoid unnecessary
model assumptions we did not use the standard Coulomb
potential due to a uniformly charged sphere. Instead we
applied a potential derived from the measured charge dis-
tribution [25] of 208Pb in a parametrisation given by Eder
and Oberhummer [27]. Small energy differences occurred
(∼ 10 keV), when we extracted the Coulomb potential in
a spline representation directly from the measured charge
density by applying the Maxwell equation in its integral
form (Gauß’s law). The potential of a charged sphere and
that derived from the experimental data show significant
differences at small radii. These differences lead to shifts
in single-particle energies as large as 5 MeV. Usually these
remarkably large deficiencies of the model potentials are
tacitly absorbed in the nuclear (Woods-Saxon) potential.

4.2 The nuclear potentials

In fig. 2 the nuclear potentials VN(r) for protons and neu-
trons are shown which represent the final result of the
fitting procedure described in section 3. With these poten-
tials a convincing description of the single-particle ener-
gies E(n�) unperturbed by the spin-orbit interaction could
be achieved and the complete calculation when includ-
ing in addition the respective spin-orbit potential Vso(r)
described in section 4.3 reproduces the measured ener-
gies E(n�) very well as can be demonstrated by the num-
bers of tables 1 and 2.

At first sight the potentials for neutrons and pro-
tons resemble Woods-Saxon–like wells with depths of
V0 ≈ −46 MeV and V0 ≈ −66 MeV, radius parameters
r0 = 1.25 fm and r0 = 1.21 fm, and large values for the
diffusenesses a0 ≈ 0.8 fm and a0 ≈ 1 fm, respectively.
However, deviations from a Woods-Saxon form factor are
substantial. We see a minimum of the potentials around
r = 6 fm (neutrons) and r = 5.5 fm (protons) and a max-
imum in the nuclear interior.

Details of the potential wells VN(r) are well defined,
because the density functions R2(n�)r2 of valence orbits
probe the complete nuclear region. For protons a total of
11 maxima from the observed valence orbits 1h, 2d, 2f , 3s
and 3p contribute while 16 maxima from the 1h, 1i, 2f ,
2g, 3p, 3d and 4s neutron orbitals are relevant.

The shape of the nuclear potentials VN(r) in fig. 2 are
exclusively the result of the fitting procedure. Their char-
acteristic features seem to be remarkable at first glance. In

Fig. 2. State-independent nuclear potentials VN(r) for neu-
trons and protons in 208Pb including the Coulomb potential
VC(r) due to the measured charge distribution (top) and the
corresponding spin-orbit potentials Vso(r) (bottom). The po-
tentials are connected via the condition eq. (2) (Thomas form).

Fourier-Bessel analyses of scattering data [28], which rep-
resent an alternative method to vary the Woods-Saxon
form factor, similar potentials have been found. Qual-
itatively the same structures occur in other quantum-
mechanical many-body systems, i.e. in the self-consistent
total potentials of metal clusters [23,29] like Na198. The
apparent similarity between our phenomenological poten-
tials and those obtained from HF calculations on 208Pb
with extended Skyrme forces [23,30] shows that our re-
sults are presumably not fortuitous.

4.3 The spin-orbit potentials

The shapes of the final spin-orbit potentials for neutrons
and protons are shown at the bottom of fig. 2. The char-
acteristic maximum in the region of the nuclear surface
is expected [3] for any spin-orbit potential of the type
Vso ∼ (∇ρ× p) ·s because the gradient of the nuclear den-
sity ρ(r) in 208Pb has its maximum around r = 6-7 fm.
Apart from this known feature the potentials exhibit their
minima with negative values in the nuclear interior fol-
lowed by an insignificant increase towards the nuclear cen-
ter. These unexpected shapes are well determined by the
maxima of the density functions R2(n�)r2 of the valence
orbits as has been discussed for the nuclear potential.
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Fitting the measured spin-orbit splittings εso within a
procedure like the present one allows also to extract the
strength λ of the potentials (eq. (6)). As a result, we ob-
tained λ = 0.547 and λ = 0.744 for protons and neutrons,
respectively. The potentials of fig. 2 include the respective
λ. We notice that both potentials show almost the same
strength in the vicinity of the nuclear surface, however
they peak at slightly different radii. Equal strength, how-
ever, is a necessary condition for equal values of εso for
neutrons and protons of the same quantum numbers n, �.
The different coupling strengths λ obviously compensate
the inherent influences of the different strengths of the
nuclear potential VN(r) for protons and neutrons. Indeed,
the ratio of volume-integrals for VN(r) equals the inverse
ratio of the strengths λ.

Because the spin-orbit potential, which describes the
measured splittings ε̃so(n�), and the nuclear potential,
which in turn describes the energies E(n�), are intimately
connected by the constraints of eqs. (2) and (7), the min-
ima of Vso(r) and the wiggles of VN(r) are interdependent
and their existence seems to be necessary. The strict cor-
relation of both potentials represents the sole model as-
sumption in our analysis. While this is widely accepted
and discussed in the text books [3,31], it never has been
applied in such a strict way to derive the shapes of poten-
tials.

4.4 Single-particle energies

In fig. 3 the complete energy spectra E(n�) and E(n�)
are shown for protons and neutrons. The experimentally
known region around the Fermi level EF extends up to
binding energies of about EB = −11 MeV including all
fitted levels. In the remaining part of the spectra, the en-
ergetic position of the more tightly bound nucleons should
be regarded as extrapolation.

The 1s1/2 levels occur at 36 MeV and 40 MeV for pro-
tons and neutrons being in qualitative agreement with re-
sults of Hartree-Fock calculations with non-local Skyrme
forces [23,30] and of relativistic mean-field model calcu-
lations [12]. From fig. 3 we see that already the single-
particle energies E(n�) which are unperturbed by the
spin-orbit interaction show shell structures. This seems to
be obviously a common signature of quantum-mechanical
fermion systems. When, in addition, the spin-orbit poten-
tial is included in the calculations, we obtain the typical
shell gaps of nuclear systems and the familiar level se-
quence known from lighter nuclei. Several relativistic and
nonrelativistic Hartree calculations, e.g. [26,32–35], can-
not reproduce the single-particle energies and the spin-
orbit splittings at the same time.

The present potentials VN(r) and Vso(r) have the
virtue to be state independent. They produce a complete
set of single-particle energies and of orthogonal wave func-
tions, but they are local. This has little importance in the
region of weakly bound nucleons below the Fermi energy,
where nonlocality effects are small, and effective masses
were shown [23] to have values m∗/m � 1. Our predic-
tions for single-particle energies of deeply bound nucle-
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Fig. 3. Proton and neutron spectrum of 208Pb calculated with
potentials shown in fig. 2. The level schemes are given with-
out and with spin-orbit splitting resulting in energies E(n�)
and E(n�), respectively. The experimentally known states are
found around the Fermi energy EF in the region with binding
energies up to about EB ≈ −11 MeV.

ons must be regarded, however, with care. Interestingly,
theoretical predictions for such states starting from basic
concepts like Hartree-Fock [23] and relativistic mean-field
models [12] show qualitatively the same results. In prin-
ciple, nonlocality corrections could have been included in
the present analysis, but we decided to avoid the corre-
sponding model assumptions in order to get a pure phe-
nomenological description. As far as the spin-orbit inter-
action is concerned, a state-independent, non-local spin-
orbit potential has been derived by Scheerbaum [20] with
few model assumptions. We regard our predicted ener-
gies for deeply bound nucleons to be of minor impor-
tance, because their experimental observation seems to be
impossible. A complete set of wave functions allows, how-
ever, the calculation of quantities like single-particle den-
sities, which can be compared with experimental results
and offers the possibility to test theoretical predictions for
spin-orbit splittings, which are based on nuclear densities.
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4.5 Spin-orbit splittings

The resulting absolute values εso of the spin-orbit split-
tings for protons and neutrons and the corresponding re-
duced values ε̃so = εso/((2� + 1)/2) are compared to the
experimental data in tables 1 and 2. The quality of the
description of the fine structure of the spectra expressed
by the dependence of εso on the principal quantum num-
bers n and � (eq. (6)) is remarkable. We point out the
fact, that the pronounced dependence of εso on n is hid-
den by the generally much stronger �-dependence. The
(1/n)-dependence however appears very clearly in the re-
duced splittings ε̃so. Particularly, the ratio r = ε̃so(n =
1)/ε̃so(n = 2) ≈ 2 is achieved, which is experimentally
well established for protons in the 1h, 2d and 2f shells
and for neutrons in the 1i, 2f and 2g shells. But also the
deviations from the strict (1/n)-dependence for neutrons
and protons in the 3p shell are reproduced.

The application of other phenomenological spin-orbit
potentials which have been used in the past does not re-
produce the spectra. Simple-mindedly ε̃so could be calcu-
lated with a spin-orbit potential derived from a harmonic
oscillator nuclear potential VN(r) = −V0 + 1

2mω
2r2 ac-

cording to the Thomas prescription (eq. (2)). This leads
—independently of the radial wave functions R(n�) used
in the calculation of the perturbation matrix elements—
to the result

εso = (2�+ 1)/2 · λ · (h̄ω)2/2mπc
2 (8)

giving constant reduced splittings which are independent
on the principal quantum number n at all, in contrast to
the experimental findings.

The widely accepted procedure to derive the spin-orbit
potential of Thomas type from a Woods-Saxon nuclear po-
tential leads to the typical surface-peaked potential well
and to ε̃so(n = 1)/ε̃so(n = 2) ≈ 1.4. Thus, this type of po-
tential cannot reproduce the measured (1/n)-dependence,
i.e. the ratio 2.

Inspection of the radial distribution of the density
functions R2(n�)r2 and the form factor of the spin-orbit
potential discussed above shows a considerable overlap in
the matrix element for the maximum of the n = 1 func-
tions (1h for protons and 1i for neutrons) and the second
maximum of the n = 2 functions (2d, 2f for protons and
2f , 2g for neutrons), respectively, with Vso(r). The first
maximum of the n = 2 functions, however, contributes
only to a minor extent. Necessary for a further reduction
of ε̃so(n = 2) are negative contributions to the matrix el-
ements, which can be achieved only with negative values
of Vso(r) in the region r = 0.3–0.4 fm. This idea has been
outlined in ref. [6].

The result of the present calculations based on a free
variation of the potential shapes exhibits exactly the de-
sired behaviour (see fig. 2). The differences between proton
and neutron spin-orbit potentials are characterized by a
different radial extent. Certainly, this effect is caused by
the different densities which are probed by protons and
neutrons.

Inspection of the matrix element (eq. (6)) immediately
shows, that the observed (1/n)-dependence of the reduced

splittings εso cannot be an exact relation, because it de-
pends on the overlap of the densities R2(n�)r2 with Vso(r).
Indeed a constant value of ε̃so � 0.55 can be calculated for
n = 2 states (i.e. 2p, 2d, 2f for protons and 2p, 2d, 2f , 2g
for neutrons), whereas we obtain a monotonous increase
of ε̃so for n = 1 states, starting with ε̃so = 0.14 for 1p
neutrons up to ε̃so ≈ 0.97 for 1h protons and 1i neutrons.
Obviously, the ratio ε̃so(n = 1)/ε̃so(n = 2) has its maxi-
mum value of about 2 only around the Fermi energy and
drops continually for more tightly bound nucleons. The
same is true for unbound particles (see ref. [5]).

5 Comparison with spectroscopic quantities

The existence of a state-independent nuclear and spin-
orbit potential and the corresponding complete set of wave
functions for protons and for neutrons offers the possibil-
ity of a comprehensive and consistent reanalysis of spec-
troscopic data like spectroscopic factors of single-particle
transfer reactions on 208Pb, single-particle densities and
rms radii.

In the past 40 years, the spectroscopic investigations
of single-particle transfer reactions provided the empiri-
cal basis of the nuclear shell model. In early analyses of
such reactions on closed-shell nuclei, the wave function
of the transferred nucleon was calculated such as to re-
produce the shell model expectation values, anticipating
spectroscopic factors equal to unity. Later investigations
have applied this procedure, although it has always been
the subject of criticism, because the calculated differential
cross-section changes by some 10% for a change of only 1%
of the radius of the Woods-Saxon potential used to calcu-
late the bound-state wave function, e.g., for 208Pb. Addi-
tional uncertainties arose from the fact that the bound-
state potentials were determined individually for the dif-
ferent orbits n�, that the spin-orbit potential was chosen
highly arbitrarily and that a Coulomb potential remark-
ably different from reality was used in case of protons. For
these reasons, such a determination of absolute spectro-
scopic factors is questionable, but also the calculation of
relative spectroscopic factors should be taken with care.

In contrast to the previous analyses, the extraction of
spectroscopic factors with single-particle wave functions
determined with the present state-independent potentials
seems to be unambiguous. The wave functions do not
depend on an arbitrarily chosen potential radius. Their
detailed behaviour over the complete nuclear region is
well determined on the basis of the fitting procedure for
the potential and there is no possibility to modify the
absolute and the relative values of spectroscopic factors
in the framework of a DWBA calculation.

The reanalysis of previous proton and neutron pick-
up and stripping experiments on 208Pb was performed in
two steps. At first we tried to reproduce the spectroscopic
factors using the parameters given in the original litera-
ture. In general, this was accomplished within 20% which
is an acceptable error in view of the uncertainties i) to
extract the numerical values of the cross-sections from
the plots given in the papers and ii) to calculate DWBA
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Fig. 4. Angular distributions of differential cross-sections and vector analyzing powers measured in the 208Pb(d,3He)207Tl
reaction at 52 MeV. The data from refs. [38,39] are compared to local, zero-range DWBA-predictions including bound-state
wave functions, calculated in the state-independent potential described in section 4.

cross-sections with sometimes obviously incorrectly given
input parameters and with the use of different DWBA
codes. Then we repeated the DWBA calculations with the
bound state potentials described in section 4. The code
DWUCK4 [36] was employed in the local and zero-range
approximation. For calculation of the distorted waves in
the entrance and exit channels the original potentials have
been used as cited in the respective papers.

5.1 The 208Pb(d,3He)207Tl reaction

The proton pick-up reaction (d,3He) has been originally
investigated with a vector-polarized beam of 52 MeV deu-
terons by Grabmayr et al. [37–39]. The angular distribu-
tions of differential cross-sections and analyzing powers
for proton hole states in the 3s1/2, 2d3/2, 1h11/2 and 2d5/2

Table 3. Spectroscopic factors S from the 208Pb(d,3He)207Tl
reaction at 52 MeV.

Ex
(a) Jπ (a) S (b) S (c)

0.0 1/2+ 0.80 0.64
0.351 3/2+ 0.87 0.68
1.348 11/2− 0.89 0.43
1.683 5/2+ 0.61 0.44

(a) Energies in MeV, ref. [22].
(b) This work, data from refs. [38,39].
(c) References [38,39] (original values).

shells are shown in fig. 4. The data are compared to lo-
cal, zero-range DWBA-calculations with optical potentials
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Fig. 5. Angular distributions of differential cross-sections
from the 208Pb(d,t)207Pb reaction at 50 MeV (ref. [40]) are
compared to DWBA calculations.

from ref. [38,39] and single-particle wave functions derived
from the potentials described in section 4. The quality of
the fits is comparable to that obtained in the original work.

The spectroscopic factors deduced with the usually
adopted methods are on the average 20% smaller than
the shell model expectation value S = 1, see table 3. They
are larger than those of the previous analysis at the same
beam energy and they are in better agreement with spec-
troscopic factors deduced from other (d,3He) experiments
performed at different deuteron energies and from (t,α)
reactions, compare, e.g., the compilation given in ref. [39].

5.2 The 208Pb(d,t)207Pb reaction

For the reanalysis of the neutron pick-up experiments we
took the (d,t) data measured by Parkinson et al. [40] at
50 MeV and the (p,d) data measured by Whitten et al. [41]
at 22 MeV. Both are recommended by the Nuclear Data

Table 4. Spectroscopic factors S from the (d,t) and (p,d) re-
actions on 208Pb.

Ex
(a) Jπ(a) S(d,t)(b) S(d,t)(c) S(p,d)(d) S(p,d)(e)

0.0 1/2− 0.79 0.95 0.66 1.10
0.570 5/2− 0.79 0.82 0.76 0.67
0.898 3/2− 0.67 0.88 0.68 1.00
1.633 13/2+ 0.70 0.92 0.68 0.46
2.340 7/2− 0.70 0.86 0.74 0.42
3.416 9/2− 0.91 0.74 0.55 0.22

(a) Energies in MeV, ref. [22].
(b) This work, data from ref. [40].
(c) Reference [40] (original values).
(d) This work, data from ref. [41].
(e) Reference [41] (original values).

Sheets [22] for their spectroscopic results. In fig. 5 the
angular distributions of the differential cross-section for
the (d,t) reaction of ref. [40] are shown and compared to
the new DWBA calculations. The agreement is regarded
as being satisfactory.

The numbers given in table 4 allow the comparison
between the spectroscopic factors for pick-up from the
3p1/2, 2f5/2, 3p3/2, 1i13/2, 2f7/2 and 1h9/2 neutron shells
obtained from the original analyses of the (d,t) and the
(p,d) reaction and those from the reanalysis with the wave
functions calculated in the effective potentials described
in section 4. The spectroscopic factors from the present
analysis of the (d,t) reaction are smaller by 25% than the
shell model expectation value and they are smaller than
the original numbers. The new spectroscopic factors for
the (p,d) reaction [41] are systematically smaller by 30%
than the shell model expectation value, whereas the orig-
inal numbers scatter noticeably around the value S = 1.
From the combined reanalysis of the (d,t) and (p,d) data
we obtain an average spectroscopic factor S = 0.72.

5.3 The 208Pb(3He,d)209Bi reaction

The proton particle states have been investigated among
others by Wildenthal et al. [42]. The angular distribu-
tions of deuterons corresponding to stripping into the
1h9/2, 2f7/2, 1i13/2, 3p3/2, 2f5/2 and the 3p1/2 proton
shells are shown in fig. 6. We notice a fair agreement with
the new DWBA calculations. The corresponding spectro-
scopic factors are given in table 5. The original values are
distributed around the shell model value of S = 1 with
a 10% scatter. The reanalysis of these data relies on the
more standard spin orbit strength λDW = 12 instead of a
value of λDW = 6 used in the original work [42]. This yields
sizable differences to the original results with a maximum
deviation of 57% from S = 1, however, the same trend
of depletion with increasing excitation energy is found as
seen in the present analysis with the new potentials. The
calculations with the new wave functions give reasonable
results only for the ground-state transition (S = 0.83)
(table 5, column 3). The other particle states, which are
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Fig. 6. Angular distributions of differential cross-sections
from the 208Pb(3He,d)209Bi reaction at 51.26 MeV (ref. [42])
are compared to DWBA calculations.

Table 5. Spectroscopic factors S from the 208Pb(3He,d)209Bi
reaction at 51.26 MeV.

Ex
(a) Jπ (a) S (b) S (c) S (d)

0.0 9/2− 0.83 1.00 1.19
0.896 7/2− 0.33 1.12 0.99
1.609 13/2+ 0.45 0.94 0.96
2.826 5/2− 0.28 1.14 0.85
3.120 3/2− 0.13 1.08 0.43

(a) Energies in MeV, ref. [21].
(b) This work, data from ref. [42].
(c) Reference [42] (original values).
(d) Reanalysis of data from ref. [42] with λDW = 12.

weakly bound, show decreasing spectroscopic factors with
increasing excitation energy. This might have experimen-
tal reasons, because these states are known to be frag-
mented to some extent, and possibly other (unbound)
fragments could have been missed in the experiments. An-
other explanation can be found in the validity of our wave
functions, since the corresponding single-particle energies,
which constitute the basis of the potential fitting proce-
dure, were taken in the calculations with larger errors,

Fig. 7. Angular distributions of differential cross-sections
from the 208Pb(d,p)209Pb reaction at 20 MeV (ref. [43]) are
shown with DWBA predictions.

i.e. with lower weights, in view of the comparably unclear
experimental situation.

5.4 The 208Pb(d,p)209Pb reaction

Among the (d,p) reactions quoted in the Nuclear Data
Sheets [22] we selected the data of Kovar et al. [43] taken
at deuteron energies of 20 MeV and those of Muellehner et
al. [44] taken at 25 MeV. In fig. 7 we show the proton angu-
lar distribution corresponding to stripping a neutron into
the 2g9/2, 1i11/2, 1j15/2, 3d5/2, 4s1/2, 2g7/2 and the 3d3/2

shells. The agreement between the DWBA predictions in-
cluding the new bound state wave functions and the ex-
perimental angular distributions is convincing. In table 6
we compare the spectroscopic factors from the original in-
vestigations of the (d,p) reaction with those obtained from
our reanalysis.

The original spectroscopic factors from both experi-
ments exhibit a remarkable scattering from S = 0.58 to
S = 1.17 with an average value of S = 0.95. The num-
bers resulting from our reanalysis are generally smaller
than the previous ones, and we obtain an average value of
S = 0.58. The agreement between the new spectroscopic
factors determined for both sets of data must be regarded
as very satisfactory in view of the many error sources
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Table 6. Spectroscopic factors S from the 208Pb(d,p)209Pb
reaction at 20 MeV.

Ex
(a) Jπ (a) S

(MeV) (d,p)(b) (d,p)(c) (d,p)(d) (d,p)(e)

0.0 9/2+ 0.47 0.83 0.39 0.67
0.779 11/2+ 0.68 0.86 0.61 0.94
1.423 15/2− 0.35 0.58 0.43 1.13
1.567 5/2+ 0.54 0.98 0.68 1.00
2.032 1/2+ 0.66 0.98 0.77 0.93
2.491 7/2+ 0.53 1.05 0.55 1.17
2.538 3/2+ 0.56 1.07 0.83 1.17

(a) Reference [21].
(b) This work, data from ref. [43].
(c) Reference [43] (original values).
(d) This work, data from ref. [44].
(e) Reference [44] (original values).

associated with the reconstruction of the experimental
data and the subsequent fitting procedure.

5.5 Occupation numbers

In a comparative consideration of the results obtained
from a reanalysis of selected data from proton and neutron
pick-up and stripping experiments on 208Pb we see that
the measured angular distributions can be reproduced by
DWBA calculations with the new bound state wave func-
tions with a quality comparable to the original “best fits”.
The use of a complete set of wave functions left no room
to tamper the absolute and the relative spectroscopic fac-
tors. Considering this aspect the corresponding values ex-
hibit a comparatively small scatter around a mean value
of S = 0.74 for proton and neutron hole states and a mean
value of S = 0.59 for particle states (except the excited
states of 209Bi, where experimental problems are imagin-
able). Averaged over pick-up and stripping data we obtain
a mean value of S = 0.67. This result is remarkable, be-
cause very similar numbers were obtained from an anal-
ysis of (e,e′p) reactions [45] and from theoretical consid-
erations including short-range correlations of the nuclear
many-body system [1,46,47].

5.6 Nucleon densities and rms radii

The possibility of another test of the new wave functions
represents the comparison of calculated mean-field densi-
ties for protons and neutrons with measured charge and
mass densities and with densities calculated within dif-
ferent models. The densities for (point) protons and neu-
trons shown in fig. 8 were obtained by a summation of the
single particle densities deduced from our wave functions
with the respective statistical weight (2+ 1) including all
nucleons up to the Fermi energy.

The results are in qualitative agreement with charge
densities measured in elastic electron scattering on

Fig. 8. Mean-field densities for neutrons and protons (full
lines) as determined from the complete set of wave functions
calculated with the state-independent potentials of section 4
are compared to measured densities of refs. [25,48] (vertical
hatching to indicate experimental uncertainties) and results of
relativistic Hartree calculations (ref. [32], dashed lines).

Table 7. rms radii in fm for point proton and neutron densities
of 208Pb.

Reference Proton Neutron

Present 5.224 5.735
[48] 5.453 5.611
[33] 5.46 5.73
[32] 5.469 5.721

208Pb [25] and neutron densities deduced from the mea-
sured mass distribution [26,48]. The present proton den-
sity is smaller and the neutron density extends to larger
radii; however note the uncertainties of the experiments,
which are indicated by the hatched area in fig. 8. We
compare the densities with predictions from a relativis-
tic Hartree calculation [32] which are in quite good agree-
ment for neutrons. For protons the Hartree calculation
is in better agreement with the experimental data than
the density from the sums of present wave functions. A
nearly perfect agreement shows the comparison with the
mean-field neutron density and with that obtained from
relativistic Hartree calculations [33]. Good agreement with
measured charge density was obtained by, e.g., Hasse et
al. [49] and Jaminon et al. [50] in mean-field calculations
when the occupation probabilities were adjusted.

The respective numerical values for the rms radii are
given in table 7 for the total (point) densities and in table 8
for some orbitals close to the Fermi surface. The second
data set originates from early low-energy nucleon trans-
fer experiments [51–55] analysed in local and non-local
DWBA approximation and with the assumption of full
spectroscopic strength S = 1 in these shells. Columns 4
and 8 give model predictions and show a general agree-
ment. Similar as in case of the total density, the rms
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Table 8. rms radii in fm for neutron and proton orbitals in 208Pb.

Proton Neutron

n� Present Exp. Theory n� Present Exp. Theory

1h9/2 5.638 6.10 [51] 6.08 [53] 3p1/2 6.394 6.10 [54] 6.15 [55]
3s1/2 5.419 5.25 [52] 5.37 [53] 2f5/2 6.196 5.92 [54] 6.05 [55]
2d3/2 5.481 5.39 [52] 5.51 [53] 3p3/2 6.322 5.97 [54] 6.1 [55]
1h11/2 5.827 6.08 [52] 6.22 [53] 2f7/2 6.177 5.76 [54]
2d5/2 5.498 5.37 [52] 5.49 [53] 1i13/2 6.437 6.20 [54]

1h9/2 5.843 5.90 [54]

radii of the present work are smaller than the predictions,
whereas the neutron rms radii are predicted reasonably
well on average. There is also access to single-particle den-
sities via magnetic electron scattering. However, as small
admixtures of other components, the so-called core polari-
sation, easily affect the measured cross-sections, we do not
discuss these results.

6 Discussion of the spin-orbit splitting

In a very detailed investigation Scheerbaum [20] has tried
to describe quantitatively the observed spin-orbit split-
tings on the basis of the Brueckner-Hartree-Fock theory.
He has shown, that in lowest-order perturbation theory,
the spin-orbit splitting of a valence nucleon outside a spin-
saturated core arises entirely from the spin-orbit part of
the nucleon-nucleon interaction, and there are no contri-
butions from the tensor force and the quadratic spin-orbit
force. With a complete treatment of the direct and the
exchange part of the spin-orbit interaction, Scheerbaum
calculated the contribution of spin-saturated shells to the
spin-orbit splitting for neutrons:

εso(n�) =
(
2�+1

)π
3
S30

∫ ∞

0

1
r

d
dr

(
ρp+2ρn

)
R2(n�) · r2dr.

(9)

S30 characterizes the strength of the triplet-odd part of
the nucleon-nucleon interaction, ρp and ρn are proton and
neutron densities. The spin-orbit splitting for protons is
given by interchange of ρp and ρn in eq. (9). An estimate
for the complete splittings in 208Pb is rendered more diffi-
cult due to the unknown influence of the spin-unsaturated
1h proton and 1i neutron shells. Scheerbaum has shown,
that a calculation with realistic nucleon-nucleon inter-
actions, harmonic oscillator wave functions R2(n�) and
model densities ρp and ρn yields values of εso, which are
far too small in comparison to the experiment.

We tried another interpretation of eq. (9). Inserting the
radial wave functions R2(n�) and the single-particle densi-
ties of the spin-saturated shells, calculated from the wave
functions in the state-independent potential (section 4),
one can take S30 as a parameter to reproduce the abso-
lute measured values of εso(n�). These can be reproduced
with a mean value of S30 = (−59±6) MeVfm5 for neutrons

and of S30 = (−52 ± 3) MeVfm5 for protons. This result
should be compared to S30 = −46.3 MeVfm5 for the Yale
potential and with S30 = −47.4 MeVfm5 for the Gammel-
Thaler potential. Obviously, a nearly quantitative descrip-
tion of the spin-orbit splittings can be achieved. The con-
tribution of the spin-unsaturated shells, however, remains
unclear.

Instead of calculated densities, one can introduce mea-
sured proton and neutron densities in eq. (9), tacitly in-
cluding the spin-unsaturated 1h11/2 proton and 1i13/2

neutron shells. But the quality of the description of
εso(n�) with deduced strength parameters S30 = (−53 ±
7) MeVfm5 for neutrons and S30 = (−50±7) MeVfm5 for
protons is not so convincing.

Scheerbaum [20] also tried to give an estimate of the
contribution of the tensor interaction to the nuclear spin-
orbit splitting:

εso(n�) = −(2�+ 1) KT

∫ ∞

0

ρ

r

dρ
dr

R2(n�) · r2dr . (10)

These matrix elements contain a radial form factor, which
is quite similar to that of eq. (9). Inclusion of the tensor
part of the nucleon-nucleon interaction in our analysis,
however, could not improve the fit of εso(n�) obtained from
eq. (9) with pure spin-orbit interaction.

An investigation of the single-particle spin-orbit poten-
tial exceeding the work of Scheerbaum has been performed
by Penzel and Stocker [11]. In addition to the direct part
of the spin-orbit potential they treat explicitly the ex-
change part up to second order. For the calculation of the
spin-orbit matrix elements they use harmonic oscillator
wave functions and give predictions for εso(n�) in case of
N = Z nuclei with spin-saturated shells. They find that
the first-order contributions to the splittings of levels near
the Fermi energy (results of Scheerbaum) are reduced by
an amount of about 30% due to the second-order contri-
butions. For a hypothetic N = Z nucleus with A = 208
they obtain values of εso(n�) which are quite similar to
those found in 208Pb. They can also describe qualitatively
the empirically found reduction of εso with increasing n
for given �-values. The role of spin-unsaturated shells re-
mains, however, unexplained.

The attempts of Bhattacharya [9] to describe the
observed spin-orbit splittings with a spin-orbit poten-
tial derived from a Woods-Saxon potential with adapted
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geometry were not successful. He describes neither the ab-
solute values of εso with the desired accuracy, nor the fine-
structure of εso, expressed by the dependence on the prin-
cipal quantum number n. The ratio ε̃(1h)/ε̃(2d) = 1.27
for protons, for example, is by far too small compared to
the observed value of 1.90. The failure of a quantitative
description is, however, not astonishing in view of the sim-
plicity of the model.

Single-particle energies in 208Pb were calculated by
Belgoumène et al. [13] in an average field of Woods-Saxon
type and with a spin-orbit term constructed in a self-
consistent manner from the single-particle densities. This
leads to a reduction of adjustable parameters compared to
methods usually applied. As a result the energies for pro-
tons and neutrons in 208Pb are fairly well described and
the level ordering is in general reproduced, but a correct
description of the fine structure εso(n�) is missing.

Calculations in the frame of a relativistic mean-field
model with derivative couplings were performed by Chi-
apparini et al. [12] for finite nuclei, as, e.g., 208Pb. The
shape of the resulting central and spin-orbit potentials
show certain similarities with the pure phenomenological
potentials from the present paper. Because this theoret-
ical investigation only aims at a principal understanding
of nuclear phenomena, a quantitatively correct description
of the single-particle energies cannot be expected. Indeed,
the absolute agreement between measured and calculated
energies is little satisfactory.

7 Concluding remarks

Many experiments and related theoretical investigations
have shown, that properties of few selected nuclei can be
described in the frame of the simple shell model. Such nu-
clei are found near closed shells and 208Pb was thought to
be the most important candidate. The basic strong spin-
orbit splitting could be qualitatively described in the past
as result of the spin-orbit term, and other components of
the free nucleon-nucleon interaction or, alternatively, in
the frame of the solution of the relativistic many-body
problem of finite nuclei. A quantitatively correct descrip-
tion of the measured phenomena is, however, still missing.
For practitioners therefore it seems worthwhile to look for
an effective nuclear and spin-orbit potential, which both
describe in a pure phenomenological model the experi-
mental properties of the nuclei. In order to avoid model
assumptions whenever possible, the construction by the
model should be guided in a consistent way by the re-
quirement to use only measured data for input.

We succeeded in finding potentials individually shaped
to reproduce the single-particle energies for protons and
neutrons in 208Pb, e.g. the energetic position of the low-
lying states in 207Tl, 207Pb, 209Bi and 209Pb. The sole
assumption was that the nuclear central potential and
the spin-orbit potential are mutually connected by the
Thomas prescription. This connection can be explained
theoretically [20] and seems to be at least plausible. The
resulting potentials are local and state independent. They

represent effective potentials, in which all known and pos-
sibly unknown effects are incorporated. The spin-orbit po-
tential, e.g., contains all contributions resulting from the
spin-orbit-, tensor- and quadratic spin-orbit parts of the
nucleon-nucleon interaction.

The validity of the two complete sets of proton and
neutron wave functions was tested successfully in the
frame of a detailed reanalysis of spectroscopic results
from single-particle transfer reactions on 208Pb. The corre-
sponding spectroscopic factors show no ambiguities; their
absolute, mean value amounts to S = 0.67 in accordance
with other experimental [1,39] and theoretical [46,47] re-
sults. Proton and neutron densities derived from the new
wave functions by summing all contributions from the oc-
cupied orbits could be compared successfully with mea-
sured densities. They could be also used to calculate spin-
orbit splittings in the frame of the Scheerbaum model.
As a result, we arrived at a consistent description of all
relevant available spectroscopic data.
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Phys. A 494, 244 (1989).
39. P. Grabmayr, Prog. Part. Nucl. Phys. 29, 251 (1992).
40. W.C. Parkinson, D.L. Hendrie, H.H. Duhm, J. Mahoney,

J. Saudinos, G.R. Satchler, Phys. Rev. 178, 1976 (1969).

41. C.A. Whitten, N. Stein, G.E. Holland, D. Bromley, Phys.
Rev. 188, 1941 (1969).

42. B.H. Wildenthal, P.M. Preedom, E. Newman, M.R. Cates,
Phys. Rev. Lett. 19, 960 (1967).

43. D.G. Kovar, N. Stein, C. Bockelmann, Nucl. Phys. A 231,
266 (1974).

44. G. Muehllehner, A.S. Poltorak, W.C. Parkinson, R.H. Bas-
sel, Phys. Rev. 159, 1039 (1967).

45. E. N. M. Quint et al., Phys. Rev. Lett. 58, 1086 (1987).
46. V. Pandharipande, C. Papanicolas, J. Wambach, Phys.

Rev. Lett. 53, 1133 (1984).
47. S. Fantoni, V.R Pandharipande, Nucl. Phys. A 427, 473

(1984).
48. L. Ray, Phys. Rev. C 19, 1855 (1979).
49. R.W Hasse, B.L. Friman, D. Berdichevsky, Phys. Lett. B

181, 5 (1986).
50. M. Jaminon, C. Mahaux, H. Ngo, Nucl. Phys. A 440, 228

(1985).
51. A. Warwick, R. Chapman, J.L. Durell, J.N. Mo, J.

Kuehner, Nucl. Phys. A 356, 33 (1981).
52. P.W. Woods, R. Chapman, J.N. Mo, P. Skensved, J.

Kuehner, Phys. Lett. B 116, 320 (1982).
53. D.W.L. Sprung, J. Martorell, X. Campi, Nucl. Phys. A

268, 301 (1976); and citations in references [51] and [52].
54. H.J. Körner, J.P. Schiffer, Phys. Rev. Lett. 27, 1457

(1971).
55. E. Friedman, D. Nir, D. Sueaqui, Y. Tuchman, Phys. Rev.

C 9, 2340 (1974).


